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MODERN NUMERICAL PROGRAMMING WITH JULIA FOR
ASTRODYNAMIC TRAJECTORY DESIGN

Dan Padilha∗, Diogene A. Dei Tos†, Nicola Baresi‡, and Junichiro Kawaguchi†

A programming toolkit is developed to leverage Julia, a high-performance numerical
programming language, in the generation, optimisation, and analysis of orbital
trajectories. Julia combines high-level abstraction with the computational efficiency
of dynamic compilation, enabling highly composable and extensible programs
and state-of-the-art performance in differential systems, statistical analysis, and
machine learning. This paper outlines the motivations and consequences of Julia’s
multiple dispatch, meta-programming, and other capabilities, and demonstrates
techniques enabled for future development of astrodynamics toolkits. The resulting
OrbitalTrajectories.jl toolkit’s composability, extensibility, and performance is
compared to JAXA’s in-house jTOP trajectory propagation and optimisation tool,
outperforming it by up to an order of magnitude in ephemeris-based restricted
𝑁-body trajectory propagation.

INTRODUCTION

Modern astrodynamics research exploits the chaotic dynamics of the solar system, through sim-
ulation and dynamical systems theory, to deliver lower-cost, higher-fidelity, and more ambitious
spacecraft trajectories. The complexities involved in computational astrodynamics often require a
two-language programming approach: a dynamic language (such as Python or MATLAB) provides a
high-level abstraction to an underlying high-performance code (in a low-level static language such
as C++ or Fortran), used for the computationally-intensive parts of a trajectory simulation or
analysis. In practice, such an approach introduces numerous inefficiencies and complexities not only
computationally, but also in the development, maintenance, and testing of new algorithms and tools.1

A more recent approach to avoid such issues is that taken by Julia, a modern, open-source, high-
performance numerical programming language leading the state-of-the-art in differential systems,
statistical analysis, and machine learning applications.2–5 Julia avoids the two-language problem by
combining the high-level semantics of dynamic languages with the speed and efficiency of Just-In-
Time (JIT) compilation, providing high-performance without compromising on code maintainability
and development efficiency. Its careful design lead inherently to highly composable, extensible, and
performant algorithm designs.6–8

In this paper, we introduce OrbitalTrajectories.jl,∗ an astrodynamics toolkit for generating,
optimising, and analysing spacecraft trajectories, and being developed as a demonstration of the
Julia language and its potential benefits to computational astrodynamics software. We expand
on prior related works, discussed in the next section, by motivating and applying some of Julia’s
inherent computational capabilities within the context of astrodynamic trajectory design. The
preliminary development of our toolkit is described, in which we demonstrate several procedures
with comparatively simple, composable, and immediately performant code implementations for the
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design and computation of astrodynamical models and their propagation functions, state transition
matrices, and differential correctors for the generation of periodic orbits. Our toolkit’s composability,
extensibility, and computational performance, are briefly compared against JAXA’s in-house jTOP
trajectory propagation and optimisation tool.9 Finally, we discuss current and potential future
developments for Julia-based astrodynamics tools, and provide recommendations towards supporting
more complex applications in space mission design and analysis.

Related Work

JPL were perhaps the first to identify the features of Julia likely to benefit future astrodynamics
research (see Table 1 in the reference).1 The authors demonstrated implementations for solving
Lambert’s problem, i.e. a time-of-flight solver, and for 2-body propagation; these were not only
substantially simpler both in lines of code and in development time, but also were found to be only
1.7∼2.5 times slower than reference Fortran implementations. In the case of 2-body propagation, their
performance was likely hampered by a custom implementation of an Ordinary Differential Equations
(ODE) solver using the early ODE.jl package of the time, nowadays deprecated in favour of the best-
in-class ODE solvers provided by DifferentialEquations.jl.10 Despite this, the authors concluded
that the “relatively high performance of Julia in terms of computation time for a scripting language,
coupled with Julia’s mathematical-programming pedigree, ease-of-use, flexibility and breadth, make
Julia an attractive option for solving the numerical problems encountered in astrodynamics.”

In a comparative study of programming languages for astrodynamics systems, Julia was found to be
a “viable alternative to less productive compiled languages” thanks to its features, performance, and
ease-of-use.11 Here, the authors implemented and demonstrated 4 problems: calculating Keplerian
elements from a Cartesian state vector; solving Kepler’s equation; solving Lambert’s problem; and
2-body Runge-Kutta orbit propagation. In every problem, Julia outperformed MATLAB, Java, and
JIT-compiled Python by up to 1∼2 orders of magnitude, and approximately matched the performance
of C++ and Fortran. In addition, the Julia implementations also required the fewest lines of code,
fewer even than Python or MATLAB.

Perhaps the most comprehensive astrodynamics package available in Julia is SatelliteToolbox.jl

from the Brazilian National Institute for Space Research (INPE), which drives the simulation core
of the institute’s FOrPlan Satellite Simulator and has been used for mission analysis.12,13 This
package is primarily focused on near-Earth applications for satellites, providing Earth atmospheric
and geomagnetic models, two-body propagators with J2/J4/SGP4 perturbations (utilising the
ODE solvers of DifferentialEquations.jl), and reference frame converters. It is provided alongside
Astrodynamics.jl (an in-development trajectory design toolkit), as well as Julia bindings for GMAT
and Orekit.∗

Finally, in the more general field of astronomical and astrophysical computation, several relevant
examples exist. An important example is that of the Celeste project for astronomical imaging surveys,
developed by UC Berkeley together with Julia Computing and Intel, which achieved “the largest-scale
application of Bayesian inference reported to date” and concluded that Julia is suitable for high-
performance computing applications.2 More recently, JPL and Embry-Riddle Aeronautical University
described a Julia-based ephemeris reader including support for gravitational models of small bodies
and asteroids.14 Similarly, the independently developed SPICE.jl provides a nearly complete Julia
interface to the C implementation of the NAIF SPICE Toolkit,15 and is used by our implementation
of OrbitalTrajectories.jl. Separately, JPLEphemeris.jl provides a pure-Julia ephemeris reader for
computing the position and velocities of solar system bodies.†

Our toolkit differs from the above examples by implementing 4 separate propagation models with
increasing fidelity, making use of automatic code generation via symbolic computation for high-
performance propagation, and demonstrating the use of meta-programming and auto-differentiation

∗SatelliteToolkbox.jl and Astrodynamics.jl are maintained by JuliaSpace (https://juliaastrodynamics.github.io/).
†Both SPICE.jl and JPLEphemeris.jl are maintained by the JuliaAstro organisation (https://juliaastro.github.io/).
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features of Julia to determine orbit stabilities and generate periodic orbits. In addition, we utilise
version 1.5.3 of Julia, released in Nov 2020, and its up-to-date package ecosystem, providing func-
tionality not available to previous authors. Similarly to SatelliteToolbox.jl and Astrodynamics.jl,
we demonstrate integration with the SPICE Toolkit, including reading ephemerides and performing
dynamic reference frame conversions.

DESIGN OF MODERN NUMERICAL PROGRAMMING LANGUAGES

We begin by introducing two key problems inherent in numerical programming languages, which
motivate the design philosophies behind modern languages. The consequences of several design choices
in the Julia language are explained – namely of multiple dispatch, Just-In-Time (JIT) compilation,
and meta-programming – and later demonstrated in the context of astrodynamics models.

The Two-Language Problem

A common design pattern in scientific research is to use a dynamic numerical language (such
as Python or MATLAB) to define the high-level abstractions of an analysis, and combine them
with a static or compiled language (such as C or Fortran) to define the performance-critical lower-
level components. In combining two languages, researchers gain the best of both worlds: greater
productivity from dynamic abstractions, which help to more easily reason about and iteratively
develop algorithms; and greater performance from lower-level languages, which tend to be more
complicated but provide much finer control of the underlying computational hardware. However, as
most practitioners would likely attest to, such an approach has many non-trivial costs, including: the
increased complexity and development costs of a coupled design; the separate environments requiring
disparate syntax, tools, and development processes; and the non-trivial overheads of wrapping and
binding data between high- and low-level components. This trade-off in language specialisations is
known as the Two-Language Problem (see Figure 1), and having a single language that can do both
roles simultaneously was a key motivation for the design of the Julia language.6

Figure 1: Example of the Two-Language Problem, arising from the trade-off in specialisations
between low- and high-level programming languages. The Julia language is specifically
designed to avoid this.

The jTOP trajectory optimisation and mission design tool in use at JAXA is a prime example of
this, being implemented primarily in MATLAB with propagation of equations of motion performed
by a Fortran 90 library.9 Other examples include those of ULTIMAT (an ultra-low thrust mission
analysis tool in MATLAB and C-MEX) and DIRETTO (a spacecraft optimal control tool in MATLAB
and C++).16 While the two-language approach helps greatly improve the performance of a tool, its
development suffers qualitatively by being more difficult to modify or improve, as well as potential
issues due to proprietary or closed-source components (as in MATLAB’s standard library and
toolboxes, third-party solvers and optimisers, and so on).

Julia avoids the Two-Language Problem by providing high-level syntax and dynamic behaviour
similar to Python/MATLAB, and JIT compilation for all Julia functions to provide high-performance
compiled execution specialised to the data types in use at run-time.6 The primary drawback of Julia’s
design is known colloquially as the “time to first plot” problem,∗ in which each Julia function must
be compiled the first time it is called with any new combination of types. This also means that the
Julia run-time is relatively costly and may not be suitable in low-power embedded devices, although
both issues may be somewhat mitigated by careful pre-compilation of Julia programs.

∗Although it applies more generally than just to plotting.
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We note that even in cases where other dynamic languages achieve high performance, they are
likely taking a two-language approach to do so. For example, MATLAB scripts can be augmented
with MEX files – a subset of MATLAB code that is compiled from C/C++/Fortran – however “[the]
development of MEX extensions requires great care, because the environment is rather unforgiving
and programming errors can crash the Matlab IDE.”11 Similarly, Cython performs static compilation
of Python code into C, at the cost of a mixed syntax with explicit type annotations and limited
speed-up for native Python structures, while Numba offers JIT compilation at the cost of supporting
only a subset of Python code. Popular scientific packages such as Numpy and Tensorflow consist of
pre-compiled C/C++ cores, making the lower-level components more difficult to understand and
modify for the average user. Although any of these approaches can be highly productive for the
modern researcher, they are akin to bolting on performance improvements, rather than addressing
the underlying design principles of the languages themselves.

The Expression Problem

From a mathematical perspective, the purpose of code is simply to perform operations on data. In
this sense, functions (or methods) are the building blocks that define operations from input to output
data types. When maintaining or improving some piece of code such as a library or package, one
would seek to extend along two possible directions: adding new functions/methods, new data types,
or both. The Expression Problem states that it is difficult to easily support extensions across both
directions simultaneously, and is a common drawback of traditional Object-Oriented Programming
(OOP) languages (such as Python, C++, or Java).17

The practical consequences of the Expression Problem are difficult to grasp without a more
concrete motivating example. Suppose that we wish to represent different types of orbits in code,
such as CircularOrbit and EllipticOrbit, each deriving from some abstract supertype Orbit, and
that we require a function to compute a transferBetweenOrbits(𝐴, 𝐵) from Orbit 𝐴 to 𝐵. In a
traditional OOP language this could be implemented as a superclass Orbit with a default method
transferBetweenOrbits(𝑠𝑒𝑙𝑓, 𝑜𝑡ℎ𝑒𝑟); each subclass CircularOrbit and EllipticOrbit would inherit
Orbit’s default behaviour, and perhaps overload its transferBetweenOrbits method to something more
appropriate. A user of this OrbitsPackage could create their own orbit types, say a HyperbolicOrbit,
by simply inheriting behaviours from these existing Orbit types – for example, as a subclass of the
EllipticOrbit with an eccentricity 𝑒 > 1.∗ However, modifying the existing transfer functions to add
specific support for HyperbolicOrbits is much more difficult; either the OrbitsPackage developer has
to pre-empt and design for such a situation, or the user must modify the package source manually or
via dynamic code introspection.

Julia solves the Expression Problem by utilising the concept of multiple dispatch.6 Each function
in Julia is implemented by multiple individual methods, each defined based on the combination
of types used for its input arguments; an illustrated example of the OrbitsPackage in Figure 2
shows how the transferBetweenOrbits() function defines separate transfer methods depending on
the orbits involved. In essence, multiple dispatch selects the most appropriate (and, thanks to its
JIT compilation, the most performant) method for each given set of inputs,† and allows for easily
adding either new types (extending existing types), or new methods (extending existing functions).
In practice, this inherently encourages a more functional approach to programming that avoids
hard-coded implementation-specific details, leading to highly extensible and composable packages
based on more generic data types and functionality.6,7

∗In Julia, a concrete type cannot inherit from (be a subclass of) another concrete type. Although this may feel like
a significant limitation, it results in an inherent preference for composition-over-inheritance, a commonly recommended
design pattern in OOP programming to avoid the aptly-named Circle-Ellipse Problem.8

†It is important to note that multiple dispatch differs from function overloading (as present in C++ and Java), in
that it dispatches on run-time dynamic types of the inputs rather than compile-time static types.

4



Figure 2: An illustrative example of Julia’s approach to solving the Expression Problem. Multiple
dispatch allows multiple individual methods to be uniquely defined for a function based
on the combination of types used in their arguments. This makes it simple for a user to
extend a package both with new types and new methods.

Meta-Programming & Code Generation

Finally, we briefly introduce the concept of meta-programming, which refers to code that can
reason about and manipulate other code. Julia code is itself represented in tree-like data structures
of Expr types, and can be manipulated using methods defined either generically or specifically
for code expressions. In practice, this means that Julia code can modify or generate more Julia
code, including intermediate representations used by the compiler, to provide functionality such as
automatic compilation to GPU devices18 or automatic differentiation of any pure-Julia function.3

COMPILED SYMBOLIC ASTRODYNAMICAL MODELS

This section outlines how the previously described features of Julia help to simplify the develop-
ment of composable dynamical models for astrodynamics systems, utilising only the expressions of
their equations of motion in their canonical literature forms. Our OrbitalTrajectories.jl toolkit
demonstrates Julia’s powerful code generation capabilities (meta-programming) by making use of
ModelingToolkit.jl symbolic expression tools, transforming symbolic equations of motion to: build
1st-order propagation functions for use with ODE solvers; optimise memory allocations for in-place,
out-of-place, or sparse arrays; and even compute the Jacobian of the dynamical system. From these,
the JIT compiler generates highly-specialised functions, leaving the developer with easy-to-maintain
and mathematically-simple code, and high-performance compiled implementations of each model.

Elliptic Restricted 3-Body Problem (ER3BP) Model

The 2nd-order differential equations of motion for the ER3BP model19 in Equation (1) can be
expressed succinctly in Julia code as in Listing 1:∗

𝑥″ = 2𝑦′ + 𝜔/𝑥, 𝑦″ = −2𝑥′ + 𝜔/𝑦, 𝑧″ = 𝜔/𝑧.

𝜔 =
Ω(3) − 1

2
𝑧2𝑒 cos 𝑓

1 + 𝑒 cos 𝑓
Ω(3) = 1

2
(𝑥2 + 𝑦2) + 1 − 𝜇

𝑟1
+ 𝜇

𝑟2
+ 1

2
𝜇(1 − 𝜇)

(1)

where 𝜔 and Ω(3) are the elliptic and circular potential functions respectively and dependent on the
normalised position (𝑥, 𝑦, 𝑧)𝑇, distance to the primary and secondary body 𝑟1 and 𝑟2 respectively,
true anomaly 𝑓, eccentricity 𝑒, and mass fraction 𝜇 of the system.

Lines 1 and 2 of Listing 1 define an _ER3BP concrete sub-type of an abstract AstrodynamicalModel

type. Lines 3 onwards define a constructor for an Ordinary Differential Equation (ODE) system
∗Note that snippets of Julia code in this paper are intended to illustrate the ideas presented, and may differ slightly

from actual implementations, in particular due to the rapidly evolving Julia ecosystem.
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1 abstract type AstrodynamicalModel end # Super-type of all astrodynamical models

2 struct _ER3BP <: AstrodynamicalModel end # Concrete representation of ER3BP equations

3 function ModelingToolkit.ODESystem(::Type{_ER3BP})

4 @parameters μ e f # Mass fraction, eccentricity, true anomaly

5 @variables x(f) y(f) z(f) # Position variables as functions of true anomaly

6 @derivatives D'~f D2''~f # Derivatives with respect to true anomaly

7 @derivatives Dx'~x Dy'~y Dz'~z # Derivatives with respect to position

8 _ω = ω(μ, e, f, (x, y, z)) # Call math functions using symbolic variables

9 return ODESystem([

10 D2(x) ~ +2D(y) + Dx(_ω),

11 D2(y) ~ -2D(x) + Dy(_ω), # Equations of motion (as per Equation (1))

12 D2(z) ~ + Dz(_ω)

13 ], f, [x, y, z], [μ, e]) # Independent variable, state variables, parameters

14 end

15 r(μ, pos) = @. norm((pos - [-μ, 0., 0.], pos - [1 - μ, 0., 0.]))

16 Ω_3(μ, (x,y,z)) = 0.5*(x^2+y^2) + sum(((1-μ), μ) ./ r(μ,(x,y,z))) + 0.5*μ*(1-μ)

17 ω(μ, e, f, (x, y, z)) = (Ω_3(μ,(x,y,z)) - 0.5*z^2*e*cos(f)) / (1 + e*cos(f))

Listing 1: Example of Julia code for trajectory propagation in the developed OrbitalTrajectories.jl

toolkit. The equations of motion for the ER3BP model are defined as symbolic expressions
that can be manipulated directly.

(ODESystem) type, dispatched on the _ER3BP type. This is a simple example of Julia’s solution to
the expression problem, in which we may easily extend the functionality of the ModelingToolkit.jl

library’s existing ODESystem type with our own methods and types.

Lines 15 to 17 are ordinary Julia functions defining the mathematical expressions for (𝑟1, 𝑟2), Ω(3),
and 𝜔 respectively for any arbitrary input types. Each mathematical operation in Julia is defined as
a function in the Base library, including addition Base.:(+)(a, b), multiplication Base.:(*)(a, b),
norms LinearAlgebra.norm(x), and trigonometric functions Base.cos(x). Multiple dispatch allows for
the ModelingToolkit.jl library to extend the functionality of these to its own symbolic data types,
thus defining a symbolic expression algebra.∗ Lines 4 to 7 use macros – meta-programming functions
that operate on Julia expressions to generate code – to define parameters, variables, and derivatives
as symbolic data types. These symbolic types are thus traced through the generic mathematical
expressions as input arguments of the 𝜔 function on Line 8. With this, the resulting ODESystem (Lines 9
to 13) contains a set of symbolic expressions representing exactly the equations of Equation (1).

Generic Trajectory Propagation Functions

The ODESystem of a model can be passed to a generic AstrodynamicalModel type constructor in
Listing 2, which uses the expression manipulation functions of expand_derivatives and ode_order_-

lowering from ModelingToolkit.jl to expand and lower the system to 1st-order equations respectively.
The system is then built into an ODEFunction object in Line 7, using meta-programming to generate
Julia code (as a structured tree of Expr objects) that defines propagation functions for the equations of
motion of the ER3BP system. For example, the in-place propagation function (stored as literal code in
the ODEFunction’s f.f_iip.body property) accepts an initial state, system parameters, and timestep,
and modifies a cached output array in-place with the 1st-order differential values for that timestep.
These functions can be built dynamically at run-time, or as part of the OrbitalTrajectories.jl

package pre-compilation process.

The ODEFunction object can be supplied together with a desired ODE solver to the generic solve

function provided by the DifferentialEquations.jl library,10 as in Line 4 of Listing 3. Julia’s dynamic
JIT compilation automatically specialises the call to solve to the ODE solver and to the propagation

∗The authors have been informed that a paper on ModelingToolkit.jl is in preparation as of Jan. 2021.
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1 function (T::Type{<:AstrodynamicalModel})(args...; kwargs...)

2 # Expand and lower model to a 1st-order system of differential equations

3 _ODE = ODESystem(T, args...; kwargs...)

4 _eqs = expand_derivatives.(equations(_ODE))

5 eqs, states = ode_order_lowering(_eqs, independent_variable(_ODE), states(_ODE))

6 ODE = ODESystem(simplify.(eqs), independent_variable(_ODE), states, parameters(_ODE))

7 return ODEFunction(ODE) # Generate integration functions automatically

8 end

Listing 2: Example Julia code for constructing any arbitrary astrodynamical model, allowing the Julia
JIT compiler to automatically generate specialised, performant versions of its propagation
function directly from high-order differential equations.

functions,∗ leading to high-performance compiled integration of the differential equations for the
model. An example of the resulting trajectories for several models, as plotted by Line 5 (a function
from the Plots.jl library extended using a custom plotting recipe), can be seen in Figure 3. The
trajectories computed by ODE solvers from DifferentialEquations.jl automatically include high-
order interpolation and, if desired, also support generic numerical types including arbitrarily-precise
numbers, distributed arrays, and physical units of measurement.10

1 state = State(ER3BP("Earth", "Moon"), # State wrapper for pre-compiled model of ODE system

2 [0.76710535, 0., 0., 0., 0.47262724, 0.], # Normalised initial state (position, velocity)

3 (1.05π, 3π)) # Propagation timespan (e.g. true anomaly 𝑓)
4 trajectory = solve(state) # Propagate in Vern7 ODE solver, 1 × 10−10 tolerance

5 plot(trajectory, RotatingFrame()) # Plot in a normalised rotating frame

Listing 3: Example Julia code for propagating a spacecraft trajectory. The State type wraps an
astrodynamical model, in this case ER3BP, an initial spacecraft state (position and velocity),
and an integration timespan. A dispatched call to DifferentialEquations.solve(::State)

solves the initial value ODE problem, returning the propagated spacecraft state trajectory.

Composable Model Derivation: Circular Restricted 3-Body Problem (CR3BP)

The CR3BP model can be defined by simply specifying an ER3BP model with an eccentricity of
𝑒 = 0, as per Listing 4. Again, the resulting ODESystem can be passed directly to the generic constructor
in Listing 2. Thanks to meta-programming and the JIT compiler, the computations are automatically
simplified, and the resulting propagation functions compiled into highly performant versions of the
CR3BP model. In this same way, we envision future versions of OrbitalTrajectories.jl being able
to compose dynamical models together, such as adding custom perturbations dynamically.

1 struct _CR3BP <: AstrodynamicalModel end

2 function ModelingToolkit.ODESystem(::Type{_CR3BP})

3 ER3BP = ODESystem(_ER3BP) # Build directly from the ER3BP equations (setting eccentricity => 0)

4 (μ, e) = parameters(ER3BP)

5 eqs = [eq.lhs ~ simplify(substitute(eq.rhs, e => 0)) for eq in equations(ER3BP)]

6 return ODESystem(eqs, independent_variable(ER3BP), states(ER3BP), [μ])

7 end

Listing 4: Symbolic ODE system defining the equations of motion for the CR3BP model by simply
composing an ER3BP model and substituting into it an eccentricity value of 𝑒 = 0.

∗The ODEFunction type is parametrised by the types of its propagation functions, and therefore the compiler can
compile specifically high-performance code for any given ODEFunction.
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Figure 3: Example trajectories in the Earth-Moon(-Sun) system, computed using propagation
functions generated automatically from symbolic astrodynamical models, and plotted in
a normalised rotating frame, as per Listing 3 for the respective models.

Bi-Circular Restricted 4-Body Problem (BC4BP) Model

The 2nd-order differential equations of motion and code for the BC4BP model are omitted here,
however their code largely resembles that of the ER3BP model defined in Listing 1. The code is
greatly simplified by using Julia Vectors for the spacecraft position p, third-body (Sun) position
p𝑆, and unit vector r, transcribing precisely the form of Equation (21) of (Reference 19), and
expressing the resulting system as ODESystem(@.(D2(p) ~ RHS), ...) , using the broadcasting macro
@. to automatically distribute the right-hand-side terms across the spacecraft acceleration vector p″.

Ephemeris Restricted 𝑁-Body Problem (EphemerisNBP) Model

The higher-fidelity EphemerisNBP model is constructed from a restricted set of 𝑁-body forces,
in which each body’s position is computed directly from planetary ephemerides. The 2nd-order
differential equations of motion for the EphemerisNBP model20 in Equation (2) are expressed in
Julia code as in Listing 5.

p″ = −𝜇1
p

||p||3
+

𝑁
∑
𝑗=2

𝜇𝑗 (
p𝑗 − p

||p𝑗 − p||3
−

p𝑗

||p𝑗||3
) (2)

where p = (𝑥, 𝑦, 𝑧)𝑇 is the inertial position of the spacecraft relative to a chosen central body,
𝜇𝑗 = 𝐺𝑚𝑗 is the 𝑗th body’s mass parameter (where 𝐺 is the universal constant of gravitation, 𝑚𝑗 is
the mass of body 𝑗, and 𝑗 = 1 refers to the central body), and p𝑗 = (𝑥, 𝑦, 𝑧)𝑇

𝑗 is the instantaneous
position of the 𝑗th body relative to the central body (with p1 = (0, 0, 0)) as given by the JPL
ephemeris data from DE430 (computed by the SPICE.jl wrapper to the C SPICE Toolkit).

Again, the _EphemerisNBP type is constructed using the generic constructor of Listing 2. However, in
this case, the equations of motion contain a call to the C SPICE Toolkit’s spkpos function (to compute
the position of a target body relative to some reference).15 As Julia can not trace symbolic variables
through a call to an externally compiled C function, we must register it with ModelingToolkit.jl

as a fundamentally symbolic expression in Lines 1 to 3 of Listing 5. This leads to two unfortunate
side-effects. Firstly, the symbolic expressions do not know that p_j_term is a vector; this is fixed by
explicitly rewriting p_j as a vector of its terms. Secondly, they also do not know that the spkpos

function is mathematically pure (always returns the same result for the same inputs); this leads
to a significant performance penalty as SPICE is called each time the p_j_term appears in the
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1 get_pos(tgt, t, ref) = SPICE.spkpos(tgt, t, "ECLIPJ2000", "none", ref)[1]

2 get_pos(tgt, t::ModelingToolkit.Num, ref) = get_pos(Num(tgt), t, Num(ref))

3 ModelingToolkit.@register get_pos(tgt, t, ref) # Force `spkpos` to be symbolic

4 struct _EphemerisNBP <: AstrodynamicalModel end

5 function ModelingToolkit.ODESystem(::Type{_EphemerisNBP}, center, bodies, μ_list)

6 @parameters t # Time parameter 𝑡 (in J2000 epoch)

7 @variables x(t) y(t) z(t)

8 @derivatives D2''~t

9 accelerations = zeros(Num, 3) # Initialise symbolic expressions

10 p = [x, y, z] # Position of spacecraft

11 for (body, μ_j) in zip(bodies, μ_list)

12 if body == center

13 p_j = [0., 0., 0.] # Position of central body

14 else

15 p_j_term = get_pos(body, t, center) # Pos. of body 𝑗 at time 𝑡 rel. to center

16 p_j = [p_j_term[1], p_j_term[2], p_j_term[3]] # Explicitly-sized position vector

17 accelerations -= μ_j * p_j / norm(p_j)^3

18 end

19 accelerations += μ_j * (p_j - p) / norm(p_j - p)^3

20 end

21 return ODESystem(@.(D2(p) ~ sum(accelerations)), t, p, [])

22 end

Listing 5: Symbolic ODE system defining the equations of motion for the EphemerisNBP model.

resulting expressions, even though it need only be called once per body per integration timestep.
As of this writing, it is not possible to inform ModelingToolkit.jl to treat functions as pure,∗ but
Julia’s meta-programming capabilities allow for interception of the generated code and injection of
an intermediate computation of spkpos into an intermediate variable, substituting each symbolic use
of the p_j_term with its result. In assessing the performance of the EphemerisNBP in later sections,
we compare both the case with and without these precomputed body positions.

GENERIC SENSITIVITIES & DIFFERENTIAL CORRECTION

The applications of the Julia features discussed so far extend beyond those of simplifying the
development of astrodynamical models. In this section, we explain how Julia’s capabilities lead to
a fully differentiable language, and demonstrate how this can be used in practice to automatically
generate derivatives of astrodynamical models for uses such as generating (quasi-)periodic orbits.

Automatic Differentiation (AD)

Automatic Differentiation (AD) is a set of computational techniques to automatically compute
derivatives of numerical functions for use in many important scientific applications, including
optimisation and correction procedures and various machine learning algorithms.3 AD differs from the
method of Finite Differences (FD) in that it does not result in truncation and round-off errors from
approximations, and does not require as many function evaluations to compute derivatives. AD also
differs from hand-coded analytical derivatives by being automatic (less time-consuming and less prone
to programming errors), and from symbolic differentiation by being simpler and more computationally
efficient.21 The primary drawback of AD is that its generic implementation can be quite complicated;
fortunately, due largely to Julia’s dynamic multiple dispatch and meta-programming capabilities,
several packages exist to provide almost universal differentiation of any Julia code.22

Of the AD implementations that exist in Julia, we briefly describe the simpler forward-mode
method implemented by the ForwardDiff.jl package. The package introduces a Dual{𝑁,𝑇} numerical

∗The maintainers of the ModelingToolkit.jl package are aware of and working on improvements for this.
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type, a structure containing an underlying numerical value of type 𝑇 (which can itself be a Dual

number, thus supporting higher-order derivatives), and 𝑁 numbers representing its orthogonal
partial derivatives. Using multiple dispatch and meta-programming, fundamental numerical functions
can be defined for an arbitrary Dual number, allowing them to be used in place of any existing
numerical values. These functions simultaneously compute both the value and its derivative and
update the Dual number, allowing the partial derivatives to propagate through the computation
stack. For example, taking the sine of a Dual number dispatches to the sin(x::Dual) method which
returns a Dual(sin(x.value), cos(x.value) * x.partials). Unlike AD implementations in other
high-level languages such as Python and MATLAB, the Julia JIT compiler specialises all code to its
parameterised Dual types, resulting in highly performant evaluations of a function and its associated
derivatives, at the cost of additional memory usage and linear scaling of computations.22

Computing State Transition Matrices (STMs)

In astrodynamics, one common use of derivatives of dynamical models is in computing the State
Transition Matrix (STM), a linear mapping of the state sensitivities of the system.23 There are
broadly four main ways to compute an STM: by variational equations (analytical or symbolic); or by
differencing (Finite (FD) or Automatic Differentiation (AD)).

Variational Equations The STM Φ of a 1st-order system of 𝑁 equations of motion 𝑓 (a function of
the state 𝑋) is found by integrating the differential system augmented with 𝑁2 variational equations
(elements of the Jacobian ∇𝑓 of the model), as per Equations (3) and (4).24,25

�̇� = 𝑓(𝑋) (3)
Φ̇(𝑡, 𝑡0) = ∇𝑓(𝑋𝑡)Φ(𝑡, 𝑡0) (4)

where the STM’s initial state is the identity matrix Φ(𝑡0, 𝑡0) = 𝟙, and the Jacobian ∇𝑓 is computed
for some state 𝑋𝑡 with respect to the initial state 𝑋𝑡0

.
The Jacobian ∇𝑓 of an astrodynamical model’s equations of motion 𝑓 can be computed analytically

or found through symbolic manipulation. In Julia, we can define a generic method to build the
augmented differential system using a Jacobian computed automatically by tracing symbolic variables
through the equations of motion, and a symbolic expression of the STM differential system of
Equation (4) (Lines 5 and 6 of Listing 6). In this way, Julia effectively automates the process from
derivation of variational equations through to their propagation functions, eliminating the need for
any manual steps, additional code, or external tools (such as symbolic manipulation in Maple25).

1 function AugmentedODEFunction(ODE::ModelingToolkit.AbstractODESystem)

2 iv, dvs, params = independent_variable(ODE), states(ODE), parameters(ODE)

3 @variables Φ[1:length(dvs), 1:length(dvs)](iv) # State Transition Matrix (N*N)

4 @derivatives D'~iv # Derivative w.r.t. independent var.

5 ∇f = ODEFunction(ODE; jac=true).jac(dvs, params, iv) # Build f's Jacobian

6 vareqs = simplify.(D.(Φ) .~ ∇f * Φ) # Equation (4)

7 augmented_ODE = ODESystem([equations(ODE)..., vareqs...], iv, [dvs..., Φ...], params)

8 return ODEFunction(augmented_ODE) # Augment system with vareqns and build integration functions

9 end

Listing 6: Example of a generic function for augmenting an arbitrary ODE system with its variational
equations, allowing the State Transition Matrix (STM) to be computed simultaneously.

Finite/Automatic Differentiation It is also possible to perform numerical differentiation by Finite
(FD) or Automatic Differentiation (AD). In Listing 7, the DiffEqSensitivity.seed_duals function on
Line 2 seeds a given initial state vector state.u0 with Dual type numbers. Line 3 then rebuilds the
State wrapper with the seeded initial state vector u0 and solves the resulting initial value problem,
returning the full trajectory together with its computed partial derivatives.
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This function exploits the computational efficiency and precision of AD and the differentiability
of Julia code22 to compute the STM at every state, without manually or symbolically specifying
variational equations. It is therefore agnostic to the astrodynamical model in use, accepting any of
the four models defined previously, wrapped by a State type. It is trivial to manually pull back the
Dual partial AD derivatives to recover a trace of the STM along its fully integrated and interpolatable
trajectory, or otherwise to use ForwardDiff.jacobian or FiniteDiff.finite_difference_jacobian to
directly extract an AD or FD Jacobian. It is likewise simple to compute sensitivities with respect to
model parameters (by also seeding them with Dual), such as the 𝜇 parameter of the CR3BP model,
or to add intermediate steps such as converting the resulting trajectories to other reference frames.

1 function STM_trace(state::State; kwargs...) # Seed State with Duals for automatic differentiation

2 u0 = DiffEqSensitivity.seed_duals(state.u0, typeof(state.model))

3 solve(remake(state; u0); kwargs...) # Propagate trajectory together with its STM

4 end

Listing 7: Generic state sensitivity function providing automatic propagation of trajectories together
with their STMs for any differentiable astrodynamical model.

STM Accuracy & Performance

Figure 4 shows the result of tracing the maximum eigenvalue 𝜆max of the STMs propagated using
both symbolically-generated Variational Equations (VE) and Automatic Differentiation (AD) for the
three trajectory test cases defined by (Reference 25). The test cases’ CR3BP initial state is mapped
to the ER3BP, BC4BP, and EphemerisNBP models using arbitrarily-chosen initial true anomaly
𝑓0, third-body (Sun) phase angle 𝛼0, and epoch time 𝑡0 parameters respectively. For the sake of
comparison, the BC4BP and EphemerisNBP models also include the gravitational force of the Sun.
In every model, the trajectories and STM traces for both VE and AD match within relative error
tolerances, and as such appear as a single line in the figure. In addition, for the CR3BP model,
manually hand-coded equations of motion and variational equations are also compared, and again
match both the VE and AD trajectories.

Note that the EphemerisNBP’s STM trace matches the behaviour of the other models despite
being propagated in an inertial frame (as per Equation (2)). This is because the EphemerisNBP
trajectory is converted to a normalised rotating frame using an instantaneous state transformation
matrix computed by the C SPICE Toolkit’s sxform function and using a SPICE dynamic frame
built as-needed by OrbitalTrajectories.jl at run-time. This reference frame conversion is a simple
matrix multiplication with the state vector, and so automatically transforms the AD-computed STM
values appropriately by cross-multiplying the partial derivatives stored in the state’s Dual values. By
comparison, the VE version of EphemerisNBP requires a custom state transformation function to
properly cross-multiply the partial derivatives. The difference between these two approaches can be
seen in Listing 8, further highlighting the benefits of multiple dispatch in separating functionality.

As expected, the astrodynamical models display distinctive yet similar behaviours in their STM’s
𝜆max traces. The 𝜆max values for the CR3BP models, which act as a proxy measure of the sensitivity
of each orbit, match the reference values given by (Reference 25) to within the relative tolerances
specified in Table 1. The FD models were found to be the least accurate in computing 𝜆max, especially
in the particularly sensitive “PO2” case with multiple close fly-bys of the secondary body. The AD
and VE models are the most precise for these cases, and their difference may be due to the method
used to compute the reference values, or due to their solver parameters and integration paths.25

A representative computational performance comparison between the models and differentiation
methods is shown in Table 2, averaged across each model and method from up to 10, 000 individual
runs of each of the 3 periodic orbit test cases above, with computational times normalised within
each case. These show that the manually optimised, hand-coded variants of trajectory and STM
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Figure 4: Comparison of 3 trajectory test cases25 (top; 𝑥-𝑦 in rotating frame) and their propagated
STMs (bottom; maximum eigenvalues 𝜆max shown), as computed by Variational Equa-
tions (VE) and Finite (FD) and Automatic Differentiation (AD) functions generated
automatically by the Julia compiler.

Table 1: Error in sensitivity index 𝜆max computed using Variational Equations (VE), Finite (FD)
and Automatic Differentiation (AD), relative to values given by (Reference 25).

Orbit test case Model VE (rel.error) AD (rel.error) FD (rel.error)
7:4 resonant (“PO1”) CR3BP 8.1 × 10−6 1.9 × 10−5 1.1 × 10−5

8:11 + flybys (“PO2”) CR3BP 2.0 × 10−3 7.1 × 10−3 4.8 × 10−1

L1 halo orbit (“PO3”) CR3BP 3.2 × 10−8 1.8 × 10−7 2.7 × 10−3

propagation for CR3BP are, as expected, the fastest methods and faster than their symbolically-
derived counterparts; this includes the generic AD and FD methods used on the hand-coded equations
of motion. However, we argue that such hand-coded models, from a programming quality perspective,
require comparatively more cumbersome code that bears limited resemblance to their canonical forms
typically expressed in literature, and which force developers to change more code due to the coupling
of the system and its variational equations. For example, the augmented system requires manually
updating the (6 ∗ 6) = 36 derived variational equations whenever the equations of motion change,
increasing the likelihood of introducing mathematical or programming errors.

By comparison, the symbolic models defined here are simpler to maintain and extend, being directly
linked to the canonical equations of motion. Meta-programming and multiple dispatch combine to
generate relatively high-performance versions of these models, and allow for exploiting existing or
future developments in the ecosystem, such as automatically translating code to run on GPUs.18

Future efforts to ensure type-stability and minimise dynamic allocations, together with improvements
to the symbolic expression manipulation library, may likely lead to further improved performance.
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1 # Dispatch this method when state vector is Dual numbers -- multiply state by rotation matrix

2 transform_state(u::AbstractVector{<:ForwardDiff.Dual}, transform) = transform * u

3 # Otherwise dispatch this generic method -- transform both state and STM variational elements

4 function transform_state(u, transform)

5 new_u = copy(u)

6 new_u[begin:STATE_DIMS] .= transform * @view(new_u[1:STATE_DIMS])

7 if length(new_u) == (STATE_DIMS + STATE_DIMS*STATE_DIMS)

8 STM_elements = reshape(@view(new_u[STATE_DIMS+1:end]), (STATE_DIMS, STATE_DIMS))

9 STM_elements .= transform * STM_elements # Cross-multiply the STM elements appropriately

10 end

11 return new_u

12 end

Listing 8: Methods for transforming a state vector 𝑢 to a new reference frame given its instantaneous
transformation matrix, comparing AD-based Dual number states and VE-augmented states.

Table 2: Representative relative computational costs for propagating a trajectory and an augmented
trajectory including a State Transition Matrix (STM), using Finite (FD) and Automatic
Differentiation (AD), and symbolically-generated Variational Equations (VE).

Trajectory STM (VE) STM (AD) STM (FD)
CR3BP (hand-coded) 1.00× 1.22× 1.97× 6.95×

ER3BP 1.64× 2.93× 2.90× 12.79×
CR3BP 1.90× 1.88× 3.18× 14.16×

BC4BP (+Sun) 2.67× 26.84× 4.39× 18.94×
EphemerisNBP (+Sun) 18.75× 36.89× 22.87× 241.21×

The FD method is shown to be both the slowest and least accurate, as it propagates the equations
of motion multiple times on slightly differing trajectories. Under FD, only the final STM (the
monodromy matrix after a full orbital period of the original CR3BP orbit) is computed, although it
should be possible to also extract the full STM trace with relatively minimal additional overhead.
The ER3BP model appears to generally outperform the CR3BP model, despite the latter being a
simplified version of the former; however this is simply due to the selected Vern7 adaptive-step solver
requiring more steps in particular for the PO2 case’s close fly-bys of Europa. In reality, a single step
in the CR3BP model is computed slightly faster than the ER3BP model.

Most importantly, we demonstrate the strengths of the AD methods, requiring no additional code
(other than to seed and extract the partial derivatives) to compute the STMs of any astrodynamical
model provided, and yet resulting in similar accuracies and sometimes better performance than the
corresponding VE methods.∗ Indeed, this matches the experiences of the Celeste project, which
combined both hand-coded derivatives and AD to greatly reduce development burden and also
provide additional performance improvements.2

Single-Shooting Differential Correction

Single-shooting differential correction is a method used to find periodic orbits by iteratively
correcting an initial state until a specified periodicity condition is met and convergence to a periodic
trajectory is attained. Using a root-finding algorithm and the trajectory sensitivity (STM) as computed
previously, we demonstrate a generic differential corrector that finds quasi-periodic axisymmetric-like
orbits in any astrodynamical models provided.

The equations of motion of the CR3BP are invariant under the transformation 𝑡 = −𝑡, 𝑦 = −𝑦, for
time 𝑡 and 𝑦 position of the spacecraft respectively.26 An initial state propagated forwards in time

∗The performance of some VE models is likely hampered by their symbolic derivations, which may improve with
future developments. Despite this, their performance is adequate while greatly reducing the development burden.
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results in a trajectory that is flipped about the 𝑥𝑧-plane as the same state propagated backwards
in time. This symmetry implies the existence of axisymmetric orbits: a trajectory that crosses the
𝑥-axis perpendicularly in two places will produce one half of the same orbit flipped across the 𝑥-axis
backwards in time, as in the example of Figure 5. A single-shooting differential corrector finds such
orbits from an initial guess of a trajectory that crosses the 𝑥-axis at least twice, iteratively correcting
it towards the symmetric requirements for some period 𝑇 of 𝑦 = 𝑧 = ̇𝑥 = 0 at 𝑡 = 0 and 𝑇/2.24

𝛿X0 𝛿X𝑡+𝛿𝑡

Figure 5: Example of single-shooting differential correction in the Mars-Phobos CR3BP, where an
initial guess for a trajectory is iteratively corrected to find a periodic axisymmetric orbit.

Let X𝑡 be some reference initial trajectory crossing the 𝑥-axis at time 𝑡. Let X⋆
𝑡+𝛿𝑡 be an ideal

trajectory close to Xt which satisfies the axisymmetric constraints at a time defined as half of its
orbital period: 𝑡 + 𝛿𝑡 = 𝑇/2. Then, the difference between this ideal trajectory and X𝑡 is the desired
correction 𝛿X𝑡+𝛿𝑡, which depends on a perturbation 𝛿X0 to the initial state, as seen in Figure 5. A
1st-order linear approximation of this relation is given by:24,26

𝛿X𝑡+𝛿𝑡 = Φ(𝑡; X0)𝛿X0 + ̇X𝑡𝛿𝑡 (5)

where Φ(𝑡; X0) is the STM computed at time 𝑡 with respect to the initial state X0.
A single-shooting differential corrector applies Equation (5) iteratively within a root finding

procedure to find a periodic orbit. An example of such a corrector is shown in Listing 9, showing the
inner step of a quasi-Newton method (Newton method with damped step sizes). The procedure is
further helped by terminating propagation immediately after a desired number of 𝑥-axis crossings
(where 𝛿𝑦𝑡/2 = 0), and by holding the initial 𝑥-position constant (𝛿𝑥0 = 0), as per (Reference 26).

Although axisymmetric orbits are defined within the context of the CR3BP, our AxisymmetricCor-

rector corrector can be applied to any of our differentiable astrodynamical models, leading (through
simple parameter continuation) to families of (quasi-)periodic orbits as in Figure 6. For example, ap-
plying this generic corrector to the EphemerisNBP model makes it possible to generate 3-dimensional
Quasi-Satellite Orbits (QSOs), as shown by the two example orbits with initial conditions given
in Table 3. While our implementation does not yet extend beyond this simple proof-of-concept,
it highlights the benefits designing generic functions and relying on the programming language
to do the heavy lifting of composing functionality and providing performance. Future research in
similar directions may lead to new methods for generating scientific orbits or capture trajectories in
higher-fidelity models, perhaps applying existing approaches, such as those of prior works, directly.27

We make note of several caveats of our implemented proof-of-concept. Firstly, it requires some
additional steps, not shown explicitly in Listing 9, to convert between reference frames when necessary.
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1 function (corrector::AxisymmetricCorrector)(state::State; step_size=1.0, num_crossings=1)

2 reference_state = state_to_frame(state, frame(corrector))

3 callback = terminate_on_x_crossing(corrector, num_crossings)

4 trajectory = STM_trace(reference_state; callback) # Propagate initial guess with STM

5 @assert trajectory.retcode == :X_Crossing # Initial guess ends at x-crossing

6 STM = hcat([ForwardDiff.partials(u) for u in trajectory[end]]) # Extract STM at x-crossing

7 # Compute the perturbation to the initial state (see Eq. (13) of Reference 26)

8 δX_tdt = ForwardDiff.value.(-trajectory[end][residual_vars(corrector)]) # 𝛿X𝑡+𝛿𝑡
9 Ẋ _t = compute_derivative(trajectory, trajectory.t[end]) # ̇X𝑡

10 rhs = 1/Ẋ _t[2] * Ẋ _t[residual_vars(corrector)] * STM[2, free_vars(corrector)]'

11 Φ_t = STM[residual_vars(corrector), free_vars(corrector)] - rhs # 𝜙(𝑡; X0)
12 δX_0 = (Φ_t \ δX_tdt) # 𝛿X0 = 𝜙(𝑡; X0)−1𝛿X𝑡+𝛿𝑡 (Equation (5))

13 u0 = copy(reference_state.u0)

14 u0[free_vars(corrector)] .+= step_size * δX_0 # Apply correction with damped step size

15 # Return the perturbed state, corrected error |𝛿X𝑡+𝛿𝑡|, and ending time 𝑡
16 return remake(reference_state; u0), norm(δX_tdt), trajectory.t[end]

17 end

Listing 9: Illustrative example of a quasi-Newton iteration step for finding axisymmetric orbits, as
part of a generic single-shooting differential correction procedure.

Table 3: Initial conditions for the quasi-periodic orbits shown in Figure 6, as propagated in the
Mars-Phobos-Sun EphemerisNBP model centered on Mars. Times are relative to J2000.

1, 264 × 4, 592km 3D-QSO 55 × 306km 3D-QSO
𝑥0 [km] −1721.2905853705563 −1973.7797398622927
𝑦0 [km] −8035.387965174319 −9214.066550501659
𝑧0 [km] 483.12718239638104 553.9951536612949

̇𝑥0 [km/s] 1.8582536023371838 1.8526285717782527
̇𝑦0 [km/s] −0.4808842668186627 −0.4477211699864998
̇𝑧0 [km/s] −1.466746074609674 −0.9352172022943867

𝑡0 [s] 0.0 0.0
𝑇/2 [s] 13745.313782798674 13252.01104574985
𝑡𝑓 [s] 2749062.7523703636 2815256.487335143

In particular, trajectories in the EphemerisNBP model must be converted to an inertial frame for
propagation, and to a normalised rotating frame for event-finding on and for computing sensitivities
relative to the 𝑥-axis crossing (found in the callback on Line 3). These cases are largely covered by
the use of a SPICE dynamic reference frame built at run-time and a simple matrix multiplication in
Listing 8. However, the time correction 𝛿𝑡 requires a time derivative of the final state (Ẋ𝑡), which
can not be computed easily symbolically or by AD, as the SPICE.jl library calls an untraceable
external C procedure (sxform) dependent on time for computing the rotation matrix. As such, the
generic AxisymmetricCorrector must dispatch to a model-specific procedure (Line 9), which for the
EphemerisNBP is either an AD approximation that is fast but often does not converge to quasi-
periodic orbits, or an FD approximation which can better approximate the time variation, but is
slow and can be inaccurate, sometimes resulting in poor convergence.

PROPAGATION PERFORMANCE & BENCHMARKS

An initial evaluation of the developed OrbitalTrajectories.jl toolkit assessed its propagation
performance against jTOP, a JAXA in-house trajectory design and optimisation toolkit comprising
a MATLAB library with a Fortran 90 core, and used in several mission analyses including for
upcoming space exploration missions.28 The Fortran core consists of hand-coded astrodynamical
models, including an ephemeris 𝑁-body propagator used for this comparison. The jTOP equations of
motion are propagated using DDEABM, a Fortran-based 12th-order Adams-Bashforth-Moulton ODE
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Figure 6: Orbits found using a generic AxisymmetricCorrector. (top) Families of Quasi-Satellite
Orbits (QSOs) in a normalised rotating 𝑥-𝑦 frame of the Mars-Phobos(-Sun) system,
coloured by relative orbit sensitivity (𝜆max of STM after approximately 1 orbital pe-
riod). In the CR3BP model, the orbits are planar, axisymmetric, and periodic. In the
EphemerisNBP model, the orbits are quasi-periodic and 3-dimensional. (bottom) Two
3D-QSOs found by applying the AxisymmetricCorrector to the EphemerisNBP model.

solver from the SLATEC Common Mathematical Library. DDEABM is an adaptive-step method, and
jTOP sets its relative and absolute tolerances to 1 × 10−7 and 1 × 10−9 by default respectively.

For comparative tests, we recreated the Forward Propagation (FWP) block of the EQUULEUS
mission analysis28 in Julia in an almost line-for-line direct translation from MATLAB, except calling
our OrbitalTrajectories.jl toolkit’s EphemerisNBP model propagator. The FWP block begins by
selecting an initial near-Earth state and propagating it forward for 3.2 × 101 hours (“FWP1”). Then,
a massive grid search is performed to propagate the ending state with a large number of initial Δ𝑉
impulsive manoeuvres for a further 1.5 years, in the aim of finding optimal lunar flybys (“FWP2”).

The times reported here were based on runs from an Intel i3-6100 CPU (3.7 GHz, 2 cores) running
single-threaded scripts in MATLAB R2020b and Julia 1.5.3. For the FWP1 tests, the jTOP propagator
was timed using a matlab.perftest.TimeExperiment measuring only the calllib call to the compiled
Fortran entry-point of jTOP; as such, these runtimes should include any overheads or bottlenecks
caused by MATLAB, providing a useful comparison to Julia. For the FWP2 tests, the jTOP propagator
was timed using a tic/toc pair surrounding the calllib call for each individual trajectory. The
OrbitalTrajectories.jl toolkit’s EphemerisNBP propagator was timed using the BenchmarkTools.jl

package’s @benchmark macro, which discards the initial time taken to run-time compile the propagator,
and the built-in @elapsed macro, for the FWP1 and FWP2 tests respectively. As described for the
EphemerisNBP model on page 8, we injected an intermediate computation of the body positions into
the generated propagation function code using meta-programming, resulting in at least an order of
magnitude performance improvement (48 calls to SPICE’s spkpos reduced to 2 per timestep).
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Three separate ODE solvers provided by the DifferentialEquations.jl common solver interface
were tested,10 with tolerances set to the default values used by jTOP. Figure 7 shows the runtime
distributions of FWP1 and FWP2 propagations for each solver, in which, with intermediate computa-
tions, our EphemerisNBP model outperformed the jTOP propagator by up to an order of magnitude
on each solver tested. The Julia DDEABM solver is a simple wrapper around the same Fortran solver used
by jTOP; its performance shows a clear difference to jTOP’s MATLAB-Fortran performance, which is
likely affected by the MATLAB run-time or communication overheads with Fortran. By comparison,
the pure-Julia VCABM solver, an adaptive-order/time Adams-Moulton method derived from DDEABM,
provides the best performance while also additionally supporting higher-order state interpolation
and custom timesteps and event functions. Similarly, the pure-Julia Vern7 solver, a Verner’s “Most
Efficient” 7/6 Runge-Kutta adaptive-step method, additionally supports lazy 7th-order interpolation,
and is generally recommended as an efficient replacement for the VCABM solver.

Figure 7: Runtime distributions for trajectory propagation in the Earth-Moon-Sun system, compar-
ing our Julia-based EphemerisNBP model and jTOP’s 𝑁-body propagator (DDEABM
solver called from MATLAB). The median runtimes are labelled for (left) 19 near-Earth
trajectories propagated 1000 times each; and (right) ∼150, 000 initial Δ𝑉 burns propa-
gated over a long period for each solver.

The much greater diversity and longer propagation times of FWP2 trajectories manifest as wider
runtime distributions with long tails of trajectories requiring more detailed timestepping due to
sensitivity to the lunar fly-by. Excluding pre- and post-processing, a single FWP2 run of ∼150, 000
initial Δ𝑉 burns required approximately 93.3 minutes of total propagation with jTOP. By comparison,
our EphemerisNBP model required 49.1, 83.8, and 84.4 minutes for the VCABM, DDEABM, and Vern7

solvers respectively, demonstrating the potential value of even small gains in computational efficiency.

A comparison of the trajectories’ errors in Figure 8 shows that both pure-Julia solvers computed
trajectories within a relative tolerance of at worst 1 × 10−7 relative to the jTOP DDEABM-computed
reference trajectories, with Vern7 providing a consistently accurate trajectory. The Julia-based DDEABM

solver only supports linear interpolation, so its accuracy appears to suffer due to being interpolated
to match the jTOP reference trajectories’ timesteps; in reality, with both using the same underlying
Fortran-based DDEABM solver, its trajectories should match those from jTOP exactly (as seen at the
start and end of each trajectory), with remaining differences being due to propagation of normalised
and un-normalised equations of motion for jTOP and our EphemerisNBP respectively.

Finally, we briefly examine the differences between jTOP and OrbitalTrajectories.jl from a
qualitative programming perspective. As DDEABM is a Fortran-based solver, jTOP is limited in its
ability to support advanced ODE solver capabilities such as high-order interpolations and custom
event functions and numerical types, except with direct modification of its Fortran core to add
such support. By comparison, OrbitalTrajectories.jl seamlessly allows switching between solvers,
interpolating trajectories with high accuracy, using custom event functions, and propagating custom
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numerical types such as auto-differentiable Dual numbers, thanks to the comprehensive common
ODE solver interface provided by DifferentialEquations.jl. The high-level syntax and interactive
compilation of the Julia language makes these features much more accessible than the Fortran core
of jTOP, which must be recompiled after every change. OrbitalTrajectories.jl’s symbolic models
based on ModelingToolkit.jl provide automatic extensibility such as in building augmented systems
with variational equations, whereas separate subroutines with hand-coded derivatives must be defined
in Fortran for jTOP. However, despite these seeming disadvantages, jTOP provides a comprehensive
high-level interface (as a MATLAB library) for space mission analysis, with numerous capabilities in
trajectory design and patching, multiple-shooting methods, and non-linear optimisation.29,30

Figure 8: Error in the trajectory propagations of 19 FWP1 initial cases, relative to the reference
trajectories computed by jTOP (using the Fortran DDEABM solver). Each trajectory is
interpolated to match the reference trajectories’ timesteps.

CONCLUSION

In this initial design of the OrbitalTrajectories.jl toolkit, we have demonstrated several modern
numerical programming techniques made available by the Julia programming language, and discussed
their relevance to and possible applications in the field of astrodynamic trajectory design. We showed
that the Julia language makes it relatively simple to combine such techniques in perhaps unexpected
ways, exploiting its inherent composability to combine unrelated but generic functionality with
ease. Through multiple dispatch and meta-programming, the ability to easily compose otherwise
independent components has been a powerful driver of innovation, having led some Julia practitioners
to significant advances in differential programming,3 scientific machine learning,5 and dynamical
systems.31,32

Our OrbitalTrajectories.jl toolkit demonstrates seamless integration with symbolic expressions,
differential equation systems, automatic differentiation, and generic methods. Firstly, we showed how
it is possible to define astrodynamical models as simple composable systems of symbolic equations,
allowing new models to be derived directly – such as in the CR3BP model from the ER3BP, and
also in augmenting models with their variational equations – without requiring manual derivation
or hand-coding of derived equations by the developer. Being built in a fully-differentiable language,
we showed how these models can be differentiated automatically, providing state or parameter
sensitivities for applications such as stability analysis and finding periodic and quasi-periodic orbits.
In so doing, we described some ways in which methods can be defined generically to accept arbitrary
astrodynamical models, maximising the value of individual functions and providing greater code
reuse. Finally, we briefly evaluated the performance of a Julia-based restricted 𝑁-body propagator,
and showed that in at least one mission analysis use case it was able to exceed the performance of an
existing and actively-used astrodynamics mission tool by up to an order of magnitude.
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Future improvements on OrbitalTrajectories.jl will focus towards an open-source release for
use as a mission analysis tool, including additions to the astrodynamical models and providing
perturbations such as spherical harmonics and shape models, and trajectory optimisation.33 The
universal differentiability of the Julia language may lead to more applications of differentiable
systems;34 for example, a full-featured pure-Julia ephemeris library14 could provide automatic
differentiation on SPICE kernel data, solving some of the problems we faced in the implementation
of generic methods such as the AxisymmetricCorrector. Furthermore, the rapidly evolving Julia
ecosystem may provide further inspiration for novel applications, with interesting developments in
optimisation under uncertainties,32 physics-based machine learning,35 and GPU acceleration.18 We
believe that applications such as these are in line with the modern needs of space mission analysis
and trajectory design, and find that Julia is an attractive option for the future development of
astrodynamics methods and tools.
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